MCMC procedure for contingency thales

Ruriko Yoshida

1 Preliminaries

This is based on the paper "Algebraic algorithms for sampling from conditional distributions" by Persi Diaconis and Bernd Sturmfels in Ann. Statist. Volume 26, Number 1 (1998), 363-397.

Also please see the paper "The Diaconis-Sturmfels algorithm and rules of succession" by Ian H. Dinwoodie in Bernoulli Volume 4, Number 3 (1998), 401-410.

I put them in Dropbox as well as week09.pdf file for MCMC introduction.

2 Metropolis Algorithm

Please see page 288 on Gelman et al "Bayesian data analysis". This is one algorithm to run a discrete time Markov chain on the state space. If we want to sample tables according to the hypergeometric distribution we have to put weight on the ratio of hypergeoemtric probabilities of the present step and the proposed step (it is the ratio of products of factorials, and you just get the ratio of changed cell frequencies).

Algorithm 2.1 (Metropolis Algorithm on the set of tables). Input The observed table x_0 and the sample size N. Model F.

Output Sampled tables according to the hypergeometric distribution.

Algorithm 1. Compute a Markov basis M via 4ti2 under the model F.

- 2. Set $S = \emptyset$.
- 3. for $i = 1, \dots, N$ DO
 - (a) Puck a move $z \in M$ uniformly.
 - (b) Sample a proposal $x^* = z + x_{i-1}$.

(c) Compute the ratio

$$r = \frac{p(x^*|m)}{p(x_{i-1}|m)}$$

where m is the set of given marginals. In our case that is

$$r = \frac{\prod_{all \ cell \ counts \ j \ in \ x^*} j!}{\prod_{all \ cell \ counts \ k \ in \ x_{i-1}} k!}$$

(d) Set

$$x_{i} = \begin{cases} x^{*} & \text{with probability } \min(r, 1) \text{ and if } x^{*} \geq 0\\ x_{i-1} & \text{else.} \end{cases}$$

(e) Add x_i to S.

4. Return S.

3 MCMC for goodness-of-fits

Suppose we have the null hypothesis H_0 vs the alternative H_1 . We apply MCMC for goodness-of-fit test if the sample size (some cell counts are small). The distribution of LRTs would converges to the chi square distribution with d.f. (the number of parameter in the allternative minus the number of parameters in the null hypothesis).

- **Algorithm 3.1** (MCMC for goodness-of-fits). Input The observed two way table x_0 (Just for now since it is easy to write) and the sample size N. Number of burn-in B. Number of skip S. Model for H_0 , F_0 and model for H_1 , F_1 .
- Output A list of log ratios computed from sampled tables according to the hypergeometric distribution.
- Algorithm 1. Sample B many tables (let x_0^* be the last, i.e., Bth sampled table) under F_0 with initial table x_0 using Algorithm 2.1.
 - 2. Compute MLE μ_0 under H_0 via IPF. [In our exercise I gave you the formula.]
 - 3. Set $L = \emptyset$.
 - 4. For $i = 1, \dots, N$ do:
 - (a) Sample a table x under F_0 with initial x_{i-1}^* using Algorithm 2.1.

- (b) Compute MLE μ_1 under H_1 via IPF.
- (c) Compute the log likelihood ratio l for x.
- (d) Add l to L.
- (e) Sample S many tables (let x_i^* be the last sampled table, i.e., Sth sampled table) under F_0 with the initial x using Algorithm 2.1.
- 5. Return L.