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Preview of Coming Attractions

• 5 Probability
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Chapter 5:  Probability

• Abstract but necessary because this is the mathematical 
theory underlying all statistical inference

• Fundamental concepts that are very important to 
understanding Sampling Distribution, Confidence 
Interval, and P-Value

• Our goal for Chapter 5 is to learn the rules involved with 
assigning probabilities to events

Population Sample

Probability

(Inferential) Statistics
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Probability: Basic Terminology

• Experiment: Any activity from which an outcome, 
measurement, or other such result is obtained.

• Random (or Chance) Experiment: An experiment 
with the property that the outcome cannot be predicted 
with certainty.

• Outcome: Any possible result of an experiment.
• Sample Space: The collection of all possible  outcomes 

of an experiment.
• Event: A specific collection of outcomes.
• Simple Event: An event consisting of exactly one 

outcome.

4



Complement

• Let A denote an event.
• The complement of an event A: All the outcomes in 

the sample space S that do not belong to the event A. 
The complement of A is denoted by Ac

Law of Complements:
Example: If the probability of getting a “working”  

computer is 0.7, what is the probability of getting a 
defective computer?

( ) ( )APAP c −=1
S

A
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Union and Intersection

• Let A and B denote two events.

• The union of two events: All the outcomes in S that 
belong to at least one of A or B. The union of A and B
is denoted by

• The intersection of two events: All the outcomes in 
S that belong to both A and B. The intersection of A
and B is denoted by

A B∪

A B∩
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Additive Law of Probability

•  Let A and B be any two events in the sample space S.  
The probability of the union of A and B is

( ) ( ) ( ) ( )BAPBPAPBAP ∩−+=∪

S

A B
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Additive Law of Probability

Example: At a large University, all first-year students must 
take chemistry and math. Suppose 85% pass chemistry, 
88% pass math, and 78% pass both. Suppose a first-year 
student is selected at random. What is the probability that 
this student passed at least one of the courses?

S

C M
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Disjoint Sets

• Let A and B denote two events.

• Disjoint (mutually exclusive) events: A and B
are said to be disjoint if there are no outcomes 
common to both A and B.

• The notation for this is written as 

• Note: The last symbol denotes the null set or the 
empty set.

{ }A B φ∩ = =

S

A B
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Assigning Probabilities to Events

• The probability of an event is a value 
between 0 and 1.

• In particular:

– 0 implies that the event will never occur

– 1 implies that the event will always occur

• How do we assign probabilities to events?
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Assigning Probabilities to Events

• There are different approaches to assigning 
probabilities to events

• Objective

– equally likely outcomes (classical 
approach)

– relative frequency

• Subjective
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Equally Likely Approach (Laplace)

• The equally likely outcomes approach 
usually relies on symmetry/geometry to assign 
probabilities to events.

• As such, we do not need to conduct experiments to 
determine the probabilities.

• Suppose that an experiment has only n outcomes. 
The equally likely approach to probability assigns 
a probability of 1/n to each of the outcomes.

• Further, if an event A is made up of m outcomes, 
then P (A) = m/n.
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Equally Likely Approach

• Examples:

1. Roll a fair die

– The probability of getting “5” is 1/6

– This does not mean that whenever you roll the die 
6 times, you definitely get exactly one “5”

2. Select a SRS of size 2 from a population
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Relative Frequency
Approach (von Mises)

• The relative frequency approach 

borrows from calculus’ concept of

limit.

• Here’s the process:

1. Repeat an experiment n times.

2. Record the number of times an event A occurs. 
Denote that value by a.

3. Calculate the value a/n
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Relative Frequency Approach

• We could then define the 
probability of an event A in 
the following manner:

• Typically, we can’t can’t do 
the “n to infinity” in real-
life situations, so instead we 
use a “large” n and say that
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Relative Frequency Approach

• What is the formal name of the device that allows us 
to use “large” n?

• Law of Large Numbers:

– As the number of repetitions of a random 
experiment increases,

– the chance that the relative frequency of 
occurrences for an event will differ from the true 
probability of the event by more than any small 
number approaches 0.
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Subjective Probability

• A subjective probability relies on a person to make a 
judgment as to how likely an event will occur.

• The events of interest are usually events that cannot 
be replicated easily or cannot be modeled with the 
equally likely outcomes approach.

• As such, these values will most likely vary from 
person to person.

• The only rule for a subjective probability is that the 
probability of the event must be a value in the 
interval [0,1]
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Probabilities of Events

Let A be the event A = {o1, o2, …, ok}, where o1, o2, …, ok

are k different outcomes. Then

P(A)=P(o1)+P(o2)+…+P(ok)

Problem: The number on a license plate is any digit 
between 0 and 9. What is the probability that the 
first digit is a 3? What is the probability that the first 
digit is less than 4?
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Conditional Probability & the Multiplication Rule

• Note: P(A|B) is read as “the probability that A

occurs given that B has occurred.”

•  Multiplied out, this gives the multiplication rule:

( ) ( )
( ) ( ) 0 provided ,| ≠
∩

= BP
BP

BAPBAP

( ) ( ) ( )BAPBPBAP |×=∩
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Multiplication Rule Example

The multiplication rule:

Ex.:  A disease which occurs in .001 of the population is 
tested using a method with a false-positive rate of .05 and a 
false-negative rate of .05.  If someone is selected and tested 
at random, what is the probability they are positive, and the 
method shows it?

( ) ( ) ( )BAPBPBAP |×=∩
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Independence

• If events A and B are independent, then the events A 
and B have no influence on each other.

• So, the probability of A is unaffected by whether B
has occurred.

• Mathematically, if A is independent of B, we write: 
P(A|B) = P(A)
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Multiplication Rule and Independent Events

Multiplication Rule for Independent Events: Let A and B
be two independent events, then

P(A∩B)=P(A)P(B).

Examples:
• Flip a coin twice. What is the probability of observing two 

heads?
• Flip a coin twice. What is the probability of getting a head 

and then a tail? A tail and then a head? One head?
• Three computers are ordered. If the probability of getting 

a “working” computer is 0.7, what is the probability that 
all three are “working” ?
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Attendance Survey Question 15
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• On a your index card:

– Please write down your name and section number

– Today’s Question:
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