Name Solution

STA 320 Midterm 2 Probability

November 21st, 2008

There are five questions on this test. DO use calculators if you need them. "And then a miracle occurs" is not a valid answer. There will be no bathroom break allowed. Please keep all prayers silent.

You have 50 minutes to complete this test. Please ask me questions if a question needs clarification.

Each question is worth the same number of points.

Question 1: Discrete probability distributions

If one-third of the persons donating blood at a clinic have O^+ blood, find the probability the following events:

(a) The first O^+ donor is the fourth donor of the day.

Geom.

Yn Greom (=)

 $P(Y=4)=\frac{1}{3}(1-\frac{1}{3})^{k-1}=0.0988$

(b) The second O^+ donor is the fourth donor of the day.

Neg Brownal

Yn Neg Bra(2, 3)

 $P(X=4) = {\binom{2-1}{4-1}} {\binom{\frac{1}{2}}{2}} {\binom{1-\frac{1}{2}}{2}} {\binom{1-\frac{1}{2}}{2}} {\binom{1-\frac{1}{2}}{2}}$

= (3)(3)2(3)2=0.148

Question 2: Moment generating functions

Find the moment generating function for the Bernoulli random variable.

$$f(x) = \begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$$

Question 3: Continuous probability distributions

The number of defective circuit boards among those coming out of a solidering machine follows a Poisson distribution. For a particular 8-hour day, one defective bourd is found.

(a) Find the probability that it was produced during the first hour of operation for that day.

$$X \sim \text{Unif}([0, 8])$$

 $P(X \leq 1) = \int_{0}^{1} \frac{1}{8} dx = \boxed{\frac{1}{8}}$

(b) Find the probability that it was produced during the last hour of operation for that day.

$$P(X \ge 7) = \int_{9}^{8} \frac{1}{8} dx = \frac{1}{8}$$

Questions 4: Normal distribution

The weekly amount spent for maintenance and repair in a certain company has an approximately normal distribution with a mean of \$400 and a standard deviation of \$20. If \$450 is budget to cover repairs for next week, what is the probability that the actual costs will exceed the budget amount?

$$\begin{array}{lll}
X_{N} N(400, 20^{2}) \\
Z & X & -400 \\
P(X > 450) & P(X - 400) & (550 - 400) \\
P(X > 50) & P(Z > 7.5) & = 1 - P(Z \leq 2.5) \\
& = 1 - 0.9938 \\
P(Z \leq 2.5) & = 0.5 + 0.4938$$

Questions 5: Bivariate probability distributions

An environmental engineer measures the amount (by weight) of particular pollution in air sample (of certain volume) collected over the smokestack of a coal-fueled power plant. Let X_1 denote the amount of pollutant per samplestack owhen a certain cleaning device on the stack is not operating and let X_2 denote the amount of pollutant per sample when the cleaning device is operating under similar environmental conditions. It is observed that X_1 is always greater than $2X_2$ and the relative frequency of (X_1, X_2) can be modeled by

$$f(x_1, x_2) = \begin{cases} k & \text{for } 0 \le x_1 \le 2, \ 0 \le x_2 \le 1, \ 2x_2 \le x_1 \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find the value of k that makes a probability density function. Here, χ_z

(kdA = 1 = 1 k=1

X2= = X1 R

(b) Find $P(X_1 \ge 3X_2)$.

Smore This is unif,

