# STA 321 Spring 2014

#### LECTURE 9 TUESDAY, 18 FEB

Conditional Probability & the Multiplication Rule

$$P(A | B) = \frac{P(A \cap B)}{P(B)}, \text{ provided } P(B) \neq 0$$

- Note: *P*(*A*|*B*) is read as "the probability that *A* occurs given that *B* has occurred."
- Multiplied out, this gives *the multiplication rule*:

$$P(A \cap B) = P(B) \times P(A \mid B)$$

#### Multiplication Rule Example

• The multiplication rule:

$$P(A \cap B) = P(B) \times P(A \mid B)$$

• Ex.: A disease which occurs in .001 of the population is tested using a method with a false-positive rate of .05 and a false-negative rate of .05. If someone is selected and tested at random, what is the probability they are positive, and the method shows it?

#### **Conditional Probabilities—Another Perspective**

#### Example: Smoking and Lung Disease I

| Joint<br>Probabilities | Lung Disease | Not Lung<br>Disease | Row Totals |
|------------------------|--------------|---------------------|------------|
| Smoker                 | .12          | .19                 | .31        |
| Nonsmoker              | .03          | .66                 | .69        |
| Column<br>Totals       | .15          | .85                 | 1.00       |

#### **Conditional Probabilities—Another Perspective**

5

Example: Smoking and Lung Disease I

#### Example: Smoking and Lung Disease II

| Joint<br>Probabilities | Lung Disease | Not Lung<br>Disease | Row Totals | Conditional<br>Row<br>Probabilities | Lung Disease    | Not Lung<br>Disease | Row Totals       |
|------------------------|--------------|---------------------|------------|-------------------------------------|-----------------|---------------------|------------------|
| Smoker                 | .12          | .19                 | .31        | Smoker                              | .12/.31<br>=.39 | .19/.31<br>=.61     | .31/.31<br>=1.00 |
| Nonsmoker              | .03          | .66                 | .69        | Nonsmoker                           | .03/.69<br>=.04 | .66/.69<br>=.96     | .69/.69<br>=1.00 |
| Column<br>Totals       | .15          | .85                 | 1.00       | Smokers and<br>Nonsmokers           | .15             | .85                 | 1.00             |

 $P(A | B) = \frac{P(A \cap B)}{P(B)}$ 

#### **Conditional Probabilities—Another Perspective**

6

Example: Smoking and Lung Disease I

Example: Smoking and Lung Disease III

| Joint<br>Probabilities | Lung Disease | Not Lung<br>Disease | Row Totals |
|------------------------|--------------|---------------------|------------|
| Smoker                 | .12          | .19                 | .31        |
| Nonsmoker              | .03          | .66                 | .69        |
| Column<br>Totals       | .15          | .85                 | 1.00       |

| Conditional<br>Column<br>Probabilities | Lung Disease     | Not Lung<br>Disease | Lung Disease and<br>Not Lung Disease |
|----------------------------------------|------------------|---------------------|--------------------------------------|
| Smoker                                 | .12/.15<br>=.80  | .19/.85<br>=.22     | .31                                  |
| Nonsmoker                              | .03/.15<br>=.20  | .66/.85<br>=.78     | .69                                  |
| Column<br>Totals                       | .15/.15<br>=1.00 | .85/.85<br>=1.00    | 1.00                                 |

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ 

#### Law of total probability

• For E and F are evenets,

 $P(E) = P(E \cap F) + P(E \cap F^c)$ 

• Example: A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Now assume that a one-year warranty is given for the parts that are shipped to customers. Suppose that a good part fails within the first year with probability 0.01, while a slightly defective part fails within the first year with probability 0.10. What is the probability that a customer receives a part that fails within the first year and therefore is entitled to a warranty replacement?

#### Partition

8

• A collection of events  $\{A_1, A_2, ..., A_k\}$  to be said a partition of a sample space S if  $A_i \cap A_j$  is empty set.

Example: A is any event. Then  $\{A, A^c\}$  is a partition.

Example: A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%).

#### Bayes Rule

• For a given partition of S into sets  $F_1, \ldots, F_n$ , we want to know the probability that some particular case,  $F_j$ , occurs, given that some event E occurs. We can compute this easily using the definition

 $P(F_j|E) = P(F_j \cap E)/P(E)$ 

- This is called Bayes Formula. By applying the Law of Total Probability, we can rewrite the denominator:  $P(E) = \Sigma_{i=1}^{n} P(E|F_i)P(F_i).$
- Thus,  $P(F_j|E)=P(F_j) P(F_j|E) / \Sigma_{i=1}^n P(E|F_i) P(F_i)$ .

#### Example

Urn 1 contains 5 white balls and 7 black balls. Urn 2 contains 3 whites and 12 black. A fair coin is flipped; if it is Heads, a ball is drawn from Urn 1, and if it is Tails, a ball is drawn from Urn 2. Suppose that this experiment is done and you learn that a white ball was selected. What is the probability that this ball was in fact taken from Urn 2? (i.e., that the coin flip was Tails)

#### Terminology

11

- $P(A \cap B) = P(A,B)$  joint probability of *A* and *B* (of the intersection of *A* and *B*)
- P(A|B) conditional probability of A given B
- *P*(*A*) marginal probability of *A*

### **Random Variables**

- A variable *X* is a **random variable** if the value that *X* assumes at the conclusion of an experiment cannot be predicted with certainty in advance.
- There are two types of random variables:

...)

- Discrete: the random variable can only assume a finite or countably infinite number of different values (almost always a count)
- Continuous: the random variable can assume all the values in some interval (almost always a physical measure, like distance, time, area, volume, weight,

#### Examples

Which of the following random variables are discrete and which are continuous?

- a. *X* = Number of houses sold by real estate developer per week?
- b. *X* = Number of heads in ten tosses of a coin?
- c. *X* = Weight of a child at birth?
- d. *X* = Time required to run a marathon?

# Properties of Discrete Probability Distributions

**Definition**: A Discrete probability distribution is just a list of the possible values of a r.v. *X*, say ( $x_i$ ) and the probability associated with each  $P(X=x_i)$ .

#### **Properties:**

- 1. All probabilities non-negative.
- 2. Probabilities sum to \_

 $P(x_i) \ge 0$  $\sum P(x_i) = 1$ 



An employee is to be selected at random and let X = # days of sick leave.
a.) Construct and graph the probability distribution of X
b.) Find P (X ≤ 3)
c.) Find P (X > 3)
d.) Find P (3 ≤ X ≤ 6)

# Population Distribution vs. Probability Distribution

• If you select a subject randomly from the population, then the probability distribution for the value of the random variable *X* is the relative frequency (population, if you have it, but usually approximated by the sample version) of that value

#### **Cumulative Distribution Function**

**Definition:** The *cumulative distribution function*, or *CDF* is

$$F(x) = P(X \le x).$$

**Motivation:** Some parts of the previous example would have been easier with this tool.

#### **Properties:**

1. For any value  $x, 0 \le F(x) \le 1$ .

2. If 
$$x_1 < x_2$$
, then  $F(x_1) \le F(x_2)$ 

3. 
$$F(-\infty) = o \text{ and } F(\infty) = 1.$$



a.) Find  $P(X \le 6)$ b.) Graph the cumulative probability distribution of Xc.) Find P(X > 6)

#### Expected Value of a Random Variable

19

• The Expected Value, or mean, of a random variable, *X*, is

Mean = E(X) = 
$$\mu$$
 =  $\sum x_i P(X = x_i)$ 

• Back to our previous example—what's E(*X*)?

| X    | 2   | 4   | 6   | 8   | 10  |
|------|-----|-----|-----|-----|-----|
| P(x) | .05 | .20 | .35 | .30 | .10 |

#### Variance of a Random Variable

20

• Variance= Var(X) =

$$\sigma^{2} = E\left[\left(X - \mu\right)^{2}\right] = \sum \left(x_{i} - \mu\right)^{2} \cdot P\left(X = x_{i}\right)$$

• Back to our previous example—what's Var(*X*)?

| X    | 2   | 4   | 6   | 8   | 10  |
|------|-----|-----|-----|-----|-----|
| P(x) | .05 | .20 | •35 | .30 | .10 |



#### Bernoulli Trial

- Suppose we have a single random experiment *X* with two outcomes: "success" and "failure."
- Typically, we denote "success" by the value 1 and "failure" by the value 0.
- It is also customary to label the corresponding probabilities as:

P(success) = P(1) = p andP(failure) = P(0) = 1 - p = q

• Note: *p* + *q* = 1

## **Binomial Distribution I**

- Suppose we perform several Bernoulli experiments and they are all independent of each other.
- Let's say we do *n* of them. The value *n* is the **number of trials.**
- We will label these *n* Bernoulli random variables in this manner:  $X_1, X_2, ..., X_n$
- As before, we will assume that the probability of success in a single trial is *p*, and that this probability of success doesn't change from trial to trial.

#### **Binomial Distribution II**

23

• Now, we will build a new random variable *X* using all of these Bernoulli random variables:

$$X = X_1 + X_2 + \dots + X_n = \sum_{i=1}^n X_i$$

- What are the possible outcomes of *X*?
- What is *X* counting?
- How can we find P(X = x)?

### **Binomial Distribution III**

24

- We need a quick way to count the number of ways in which *k* successes can occur in *n* trials.
- Here's the formula to find this value:

$$\binom{n}{k} = {}_{n}C_{k} = \frac{n!}{k!(n-k)}, \text{ where } n! = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1 \text{ and } 0! = 1$$

• Note:  ${}_{n}C_{k}$  is read as "*n* choose *k*."

# **Binomial Distribution IV**

- Now, we can write the formula for the binomial distribution:
- The probability of observing *x* successes in *n* independent trials is

$$P(X = x) = {n \choose x} p^{x} (1 - p)^{n - x}, \text{ for } x = 0, 1, \dots, n$$

under the assumption that the probability of success in a single trial is *p*.

#### **Using Binomial Probabilities**

**Note**: Unlike generic random variables where we would have to be given the probability distribution or calculate it from a frequency distribution, here we can calculate it from a mathematical formula.

Helpful resources (besides your calculator):

| • Excel: | Enter                      | Gives    |
|----------|----------------------------|----------|
|          | =BINOMDIST(4,10,0.2,FALSE) | 0.08808  |
|          | =BINOMDIST(4,10,0.2,TRUE)  | 0.967207 |

• Table 1, pp. B-1 to B-5 in the back of your book

### **Binomial Probabilities**

We are choosing a random sample of n = 7 Lexington residents—our random variable, C = number of Centerpointe supporters in our sample. Suppose, p = P(Centerpointe support)  $\approx$  0.3. Find the following probabilities:

- a)<br/>P ( C=2 ) http://stattrek.com/Tables/Binomial.aspx<br/> b)<br/>P ( C<2 )
- $\underline{c})P\left( \ C\leq 2 \ \right)$
- $\underline{d}P(C \ge 2)$
- $\underline{e})P(1 \le C \le 4)$

What is the *expected* number of Centerpointe supporters,  $\mu_C$ ?