Lecture notes for STA 321 for day 2 by R. Yoshida

1 Sec 6.2: The law of large numbers (part I)

Definition 1. A random sample is a set of random variables X_1, \ldots, X_n i.i.d. sampled from the sample distribution.

Remark. The law of large numbers says basically if we have a random sample and if we take the average of the random variables (this is called a sample mean, which we will define later), then the sample mean converges to the expectation of X_i .

In order to prove the law of large numbers we need Markov and Chevychev's inequalities. So first we will show these inequalities.

Theorem 2 (Markov inequality). Let X be a random variable with $P(X \ge 0) = 1$. The for any t > 0, we have

$$P(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$$

Proof. Note that

Theorem 3 (Chevychev's inequality). Let X be a random variable with V(X) exists. The for any t > 0, we have

$$P(|X - \mathbb{E}| \ge t) \le \frac{V(X)}{t^2}.$$

Proof. Let

Definition 4. A sample mean \bar{X}_n of n random variables is defined as

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Theorem 5. Let X_1, \ldots, X_n form a random sample from a distribution with its mean μ and its variance σ^2 . Then,

$$\mathbb{E}(\bar{X}_n) = \mu, \ V(\bar{X}_n) = \frac{\sigma^2}{n}.$$

Proof. $\mathbb{E}(\bar{X}_n) =$

Remark. Using Chevychev's inequality, we can estimate how far the sample mean is from μ by setting

$$P(|\bar{X}_n - \mu| \ge t) \le \frac{\sigma^2}{nt^2}.$$

Example 6. Tossing a coin n times with $P(X_i = 1) = p$ and $P(X_i = 0) = 1 - p$, where 0.1 and

$$X_i = \begin{cases} 1 & if we observe a head, \\ 0 & otherwise. \end{cases}$$

We want to know the sample size n such that

$$P(p - 0.1 \le \bar{X}_n \le p + 0.1)$$

by Chevychev's inequality.

Now we will show some simulations.