Lecture notes for STA 321 for day 2 by R. Yoshida

1 Sec 6.2: The law of large numbers (part I)

Definition 1. A random sample is a set of random variables X_{1}, \ldots, X_{n} i.i.d. sampled from the sample distribution.

Remark. The law of large numbers says basically if we have a random sample and if we take the average of the random variables (this is called a sample mean, which we will define later), then the sample mean converges to the expectation of X_{i}.

In order to prove the law of large numbers we need Markov and Chevychev's inequalities. So first we will show these inequalities.

Theorem 2 (Markov inequality). Let X be a random variable with $P(X \geq 0)=1$. The for any $t>0$, we have

$$
P(X \geq t) \leq \frac{\mathbb{E}(X)}{t}
$$

Proof. Note that

Theorem 3 (Chevychev's inequality). Let X be a random variable with $V(X)$ exists. The for any $t>0$, we have

$$
P(|X-\mathbb{E}| \geq t) \leq \frac{V(X)}{t^{2}}
$$

Proof. Let

Definition 4. A sample mean \bar{X}_{n} of n random variables is defined as

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Theorem 5. Let $X_{1}, \ldots X_{n}$ form a random sample from a distribution with its mean μ and its variance σ^{2}. Then,

$$
\mathbb{E}\left(\bar{X}_{n}\right)=\mu, V\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

Proof. $\mathbb{E}\left(\bar{X}_{n}\right)=$

Remark. Using Chevychev's inequality, we can estimate how far the sample mean is from μ by setting

$$
P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right) \leq \frac{\sigma^{2}}{n t^{2}}
$$

Example 6. Tossing a coin n times with $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=0\right)=1-p$, where $0.1<p<0.9$ and

$$
X_{i}= \begin{cases}1 & \text { if we observe a head } \\ 0 & \text { otherwise }\end{cases}
$$

We want to know the sample size n such that

$$
P\left(p-0.1 \leq \bar{X}_{n} \leq p+0.1\right)
$$

by Chevychev's inequality.

Now we will show some simulations.

