
Basic Probability

1 Elementary facts

Combinatorics The number of ways to arrange n objects in order is:

n! = n(n − 1)(n − 2) · · · 1 (and 0! = 1).

The number of ways to choose r objects from n objects is:

(

n

r

)

=
n!

r!(n − r)!
.

For n1 + n2 + . . . nr = n, the number of ways to choose n1 objects of type 1, n2 objects of
type 2, up to nr objects of type r, is

(

n

n1, n2, . . . , nr

)

=
n!

n1!n2! · · ·nr!
.

Definitions These are the basic definitions for talking about probability.
The sample space Ω is the set of outcomes in an experiment.
An event is a subset E of Ω such that P (E) is defined (an event is also sometimes called

a measurable subset). Events will always be defined so that if A is an event, then 1) the
complement of A, denoted AC is an event, and 2) if A1, A2, . . . are a sequence of events, then
∪∞

i=1Ai will also be an event. (Any set of events satisfying 1) and 2) is called a σ-algebra or
σ-field.)

P is a function that given an event A, tells the probability that the outcome lies in A.
The events A and B are disjoint or mutually exclusive if A ∩ B = ∅.

Measures A probability is a special type of measure that obeys the following three rules:
Axiom 1: 0 ≤ P (B) < ∞ (probabilities are finite positive real numbers)
Axiom 2: P (Ω) = 1 (the probability that something occurs is 1).
Axiom 3: For B1, B2, . . . disjoint events,

P (∪∞
i=1Bi) =

∞
∑

i=1

P (Bi).

Simple facts Some basic facts follow from these axioms.
Prop: 0 ≤ P (A) ≤ 1.
Prop: P (AC) = 1 − P (A).
Prop: P (A ∪ B) = P (A) + P (B) − P (AB)
Prop: P (∅) = 0.

A word about intersection For sets A and B, the intersection of A an B can be denoted
A ∩ B, AB, or A,B. All of these notations mean the same thing:

A ∩ B := {x : x ∈ A and y ∈ B}.
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Conditional probabilities If P (B) > 0, the conditional probability of A given B is

P (A | B) =
P (AB)

P (B)
.

Bayes’ Formula If F1, . . . , Fn are disjoint and ∪n
i=1Fi = Ω, then

P (Fi | A) =
P (A | Fi)P (Fi)

P (A | F1)P (F1) + . . . P (A | Fn)P (Fn)
.

Random variables A random variable is a function of the outcome. The values the
random variable can take on are called states, and lie in the state space. In other words, a
random variable is a function from the sample space to the state space.

For a discrete random variable X, the expected value of X is

E[X] =
∑

x:p(x)>0

xp(x) =
∑

ω∈Ω

X(ω)P ({ω}).

For any two random variables X and Y ,

E[X + Y ] = E[X] + E[Y ].

Independence Two events A and B are independent if

P (AB) = P (A)P (B) ⇔ P (A | B) = P (A).

Two random variables X and Y are independent if for any event X ∈ A and Y ∈ B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

2 A short guide to solving probability problems

Equally likely outcomes. If all outcomes are equally likely,

P (E) =
number of outcomes in E

total number of outcomes
.

Trick #1: Use complements. It is often easier to find P (AC) then P (A), remember

P (A) = 1 − P (AC).

Trick #2: Use independence to turn intersections into products. If we want the
probability of the intersection of A1, . . . , An, then we can break it apart only when the events
are independent:

P (A1 · · ·An) = P (A1)P (A2) · · ·P (An).

Trick #3: Use disjointness to turn unions into sums. If the events A1, . . . , An are
disjoint,

P (A1 ∪ · · · ∪ An) = P (A1) + P (A2) + . . . P (An).
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Trick #4: Use Principle of In/Ex to deal with any union. We can always break
apart unions of events A1 . . . An using the Principle of Inclusion/Exclusion, which we use
most often when n = 2:

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1A2).

Its easier to say the Principle of Inclusion/Exclusion in words than symbols: the probability
of any event occurring is the sum of the probabilities that one event occurs minus the sum
of the probabilities that 2 events occur plus the sum of the probabilities that 3 events occur
etcetera until we reach the probability that all events occur.

Trick #5: Use De Morgan’s Laws to covert unions and intersections. Convert
back and forth between union and intersection using De Morgan’s Laws:

(A1A2 · · ·An)C = AC
1 ∪ AC

2 · · · ∪ AC
n ,

(A1 ∪ A2 ∪ · · · ∪ An)C = AC
1 AC

2 · · ·AC
n .

Trick #6: Use Bayes’ Formula to reverse conditional probabilities. If you know
P (A | Fi) for all i as well as P (Fi), and want P (Fi | A), then use Bayes’ Formula.

Trick #7: Acceptance/Rejection Method 1 Suppose that we perform a trial which
if successful, has outcomes A1, . . . , An. If we fail, then we try again until one of A1 through
An occur. Then

P (Ai occurs on final trial ) = P (Ai on first trial) | first trial a success) =
P (Ai on first trial)

P (first trial a success)
.

Trick #8: Acceptance/Rejection Method 2 The other way to tackle acceptance
rejection problem is using infinite series. Remember, when |r| < 1,

∞
∑

i=0

ri =
1

1 − r
.

Common errors Try to avoid making these errors! Events use complements, unions, and
intersections. A statement like P (A)C doesn’t make sense, since P (A) is a number. What
was probably meant was P (AC). Similarly, use +, - and times for numbers like probabilities,
and never for sets. We haven’t defined A + B, what was probably intended was P (A)+P (B).

Steps to a problem: If you don’t know how to get started on a problem, the following
steps usually can get you going:

(1) Write down the sample space. Even if you can’t write down the whole sample space,
write down some of the outcomes. Make up symbols, like H for head or T for tails or W for
win and L for a loss to make writing outcomes easier.

(2) Write down the events that you are given probabilities for, and the event that you
are trying to find the probability of (the target event).

(3) See if you can express the target event in terms of union, intersection, or complements
of the events that you are given (here is where the five tricks come into play).
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Simple checks on an answer: Make sure that your final probabilities lie between 0
and 1. If you know that a set of probabilities must add to 1, then check by actually adding
them. If you have a simple intuitive reason to believe that A is more likely than B, check
that P (A) > P (B).

3 A short guide to counting

Order matters When order matters, then there are n! ways to order n objects.

Thinking about n choose k. There are several ways of thinking about
(

n

k

)

, all of which
are equivalent.

(1) It’s the number of the ways to choose a subset of size k from a set of size n.
(2) It’s the number of ways to order a group of letters A . . . AB . . . B where A appears k

times and B appears n − k times.
(3) Given n spaces, it’s the number of ways to mark k of those spaces in some way.
(4) It’s the number of ways of choosing k out of n trials to be successful.

Multichoosing Now
(

n

n1,...,nr

)

is similar, in that it generalizes
(

n

k

)

. This is because
(

n

k

)

=
(

n

k,n−k

)

. The number n multichoose n1, n2, . . . , nr counts the following.

(1) It’s the number of the ways to choose a partition of a set of size n where the first
subset has size n1, the second n2, etcetera.

(2) It’s the number of ways to order a group of letters A1 . . . A1A2 . . . A2 . . . Ar . . . Ar

where Ai appears ni times.
(3) Given n spaces, it’s the number of ways to mark n1 of those spaces with a 1, n2 spaces

with a 2, up to nr spaces with nr.
(4) Suppose each trial has r different outcomes. Then its the number of ways of choosing

n1 trials to have outcome 1, n2 trials to have outcome 2, up to nr trials having outcome r.

When all else fails. Almost any problem can be written as a problem with ordering. If
you are uncomfortable with n choose r or can’t figure out what should be ordered and what
shouldn’t then give everything in your problem a number and order everything.

For example, what’s the probability of choosing a given five card hand from a set of 52
cards? One way: number of outcomes is 1, total number of outcomes is

(

52
5

)

, so

P (hand) =
1

(

52
5

) .

Another way: number all the cards 1, . . . , 52 and order them in any one of 52! ways. Then
any outcome where the five cards we are interested in appear first in the ordering of cards
works. There are 5! ways to order these cards and (52 - 5)! ways to order the remaining 47
cards, so the total number of outcomes is 5!(47!), so

P (hand) =
5!47!

52!
,

which is the same answer as the other way.
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Another example: given a random ordering of MIIIISSSSPP , what’s the probability
that it spells MISSISSIPPI? Think about numbering every symbol, so we are ordering
x1x2x3x4x5x6x7x8x9x10x11, where x1 = M , x2 through x5 equal I, etc. Then the total
number of outcomes is 11!. The number of outcomes that are successful? Well x1 has to be
in first position, x2, x3, x4 and x5 have to occupy positions 2, 5, 8, and 10 (which they can
do in 4! ways, there are 4! ways to order the xi that equal S and 2! ways to order the xi

that equal P . So

P (MISSISSIPPI) =
1!4!4!2!

11!
.

4 How to find E[X ]

Step 1 Find the values that X can take on (this is called the positive support of X). If X is
discrete, this will be either a finite number of values {x0, x1, . . . , xn} or a countable number
of values {x0, x1, x2, . . .}. If X is continuous, it could be an interval or union of intervals,
like (0,∞) or (3, 4) ∪ [10, 15).

Step 2 Use the right formula. If X ∈ {x0, . . . , xn}, then

E[X] =
∑

x:p(x)>0

xp(x) =
n
∑

i=1

xiP (X = i).

If X ∈ {x0, x1, . . .}, then

E[X] =
∑

x:p(x)>0

xp(x) =
∞
∑

i=1

xiP (X = i).

If X is continuous in set B, then

E[X] =
∫

B
xf(x) dx.

If X takes on values 0, 1, 2, 3, . . ., then

E[X] =
∞
∑

i=0

P (X > i).

If X is continuous and nonnegative (which means the positive support of X is a subset of
(0,∞)) then

E[X] =
∫ ∞

x=0
P (X > x) dx.

Note: If we wish to find E[g(X)] then use

E[g(X)] =
∑

x:p(x)>0

g(x)p(x) =
∞
∑

i=1

g(xi)P (X = i),

and
E[g(X)] =

∫

B
g(x)f(x)dx.

For uncorrelated random variables, E[XY ] = E[X]E[Y ]. Independent random variables
are uncorrelated, but uncorrelated random variables might not be independent.
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5 How to find Var(X)

Method 1: Use
Var(X) = E[X2] − (E[X])2.

Method 2: Use
Var(X) = E[(X − E[X])2].

For uncorrelated random variables, Var(X+Y ) = Var(X)+Var(Y ). Independent random
variables are uncorrelated.

6 Distributions

The distribution of a random variable is a complete listing of P (X ∈ A) for all sets A of
interest. The distribution also referred to as the law of X, and denoted L(X). When X and
Y have the same distribution, this is denoted

X ∼ Y, or L(X) = L(Y ).

The distribution function of a random variable X (also known as the cumulative distri-
bution function) is

F (a) = P (X ≤ a).

This is a function that is bounded, that is, it always lies between 0 and 1. It is also right
continuous, that is if a1, a2, a3, . . . decrease and their limit is a, then limit of F (a1), F (a2), . . .
equals F (a).

Because of a theorem from measure theory called the Carathéodory Extension Theorem,
knowing F allows computation of P (X ∈ A) for any A of interest. In particular, if A = (a, b],
then P (X ∈ A) = F (b)−F (a). (Looks a bit like the fundamental theorem of calculus, which
is one reason why F is always capitalized when used for the distribution function.)

More precisely, if FX is the distribution function of X and FY is the distribution function
of Y , then

L(X) = L(Y ) ⇐⇒ FX(a) = FY (a) ∀a.

If X is discrete then the graph of F (a) will have jumps, if X is continuous then F (a) will
be continuous. Some more formulas that come in handy:

P (a < X ≤ b) = F (b) − F (a)

P (a < X < b) = F (b) − F (a) − P (X = b)

P (a ≤ X < b) = F (b) − F (a) − P (X = b) + P (X = a)

P (a ≤ X ≤ b) = F (b) − F (a) + P (X = a).

Remember that for continuous random variables P (X = s) = 0 for any s, so the right hand
side of these formula just becomes F (b) − F (a). Also for continuous X,

f(a) =
dF (a)

da

and
F (a) =

∫ a

−∞
f(a)da,

where f(x) is the probability density function (sometimes just called the density) of X.
Finally, say that X1, X2, . . . are independent identically distributed, or i.i.d., if they are

independent and all have the same distribution.
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6.1 Discrete distributions

A random variable is discrete if it only takes on a finite or countable number of values. The
distribtuion of a discrete random variable is also called discrete in this instance. Discrete
r.v.s have probability mass functions, where p(X) = P (X = i).

Uniform Written: U{1, . . . , n} or dn. What its like: rolling a fair die with n sides.

P (X = i) =
1

n
1{1,...,n}

E[X] =
n + 1

2

Var(X) =
(n − 1)(n + 1)

12

Bernoulli Written: Bern(p). What its like: flipping a coin once that comes up heads with
probability p and counting the number of heads. Also, the number of successes in a single
trial where the trial is a success with probability p.

P (X = 1) = p

P (X = 0) = 1 − p

E[X] = p

Var(X) = p(1 − p).

Binomial Written: Bin(n, p). What it’s like: flipping i.i.d coins n times where the prob-
ability of heads is p and counting the number of heads. Also, the number of successes in a
single trial where the trial is a success with probability p.

Also X = X1 + X2 + . . . Xn, where Xi are i.i.d. and distributed as Bern(p).

P (X = i) =
(

n

i

)

pi(1 − p)n−i1{0,...,n}

E[X] = np

Var(X) = np(1 − p).

Geometric Written: Geo(p). What it’s like: flipping i.i.d. coins with probability p of
heads and counting the number of flips needed for the first head. Also, the number of trials
needed for 1 success when the probability of success at each trial is p and each trial is
independent.

P (X = i) = (1 − p)i−1p1{0,1,...}

E[X] =
1

p

Var(X) =
1 − p

p2
.
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Negative Binomial Written: NB(r, p). What it’s like: flipping i.i.d. coins with proba-
bility p of heads and counting the number of flips needed for r heads to arrive. Also, the
number of trials needed for r successes when the probability of success at each trial is p and
each trial is independent.

Also X = X1 + X2 + . . . Xr, where Xi are i.i.d. and distributed as Geo(p).

P (X = i) =
(

i − 1

r − 1

)

pr(1 − p)i−11{0,1,...}

E[X] =
r

p

Var(X) = r
1 − p

p2
.

Hypergeometric Written: HG(N,m, n). What it’s like: drawing n balls from an urn
holding m green balls and N −m blue balls and counting the number of green balls chosen.

P (X = i) =

(

m

i

) (

N−m

n−i

)

(

N

n

) 1{0,1,...,n}

E[X] =
nm

N

Var(X) =
N − n

N − 1
np(1 − p).

Zeta Written: Zeta(α). A.k.a. Zipf or power law. What it’s like: things like city sizes and
incomes have Zeta distributions.

P (X = i) =
C

iα+1
1{1,2,...}

E[X] = ????

Var(X) = ????.

Special notes: Except for special values of α like 1, we do not have a closed form solution
for the value of C, the normalizing constant. Choose C so that

∑∞
i=1 P (X = i) = 1. Similarly,

there are no closed form solutions for E[X] or Var(X). These must be evaluated numerically.
When α < 1, E[X] does not exist (or is considered infinite). Similarly, when α < 2, Var(X)
does not exist (or can be considered infinite).
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Poisson Written: Pois(λ). What it’s like: Given occurences that happen at rate λ, it is
the number of occurences that happen in 1 unit of time. Given an i.i.d. supply of exponential
random variables with parameter λ, call them X1, X2, . . ., it is

max
i

X1 + X2 + . . . + Xi < 1.

P (X = i) = e−λ λi

i!
1{0,1,...}

E[X] = λ

Var(X) = λ.

6.2 Continuous Distributions

A random variable is continuous if P (X = a) = 0 for all a. The distribution of a continuous
random variable is also called continuous.

Uniform Written: U [a, b] Variations: U(a, b), U(a, b], U [a, b) What it is: choosing ran-
domly a real number from the interval (a, b).

f(x) =
1

b − a
1(a, b)

F (x) =











0 x < a
x−a
b−a

a ≤ x ≤ b

1 x > b

E[X] =
b + a

2

Var(X) =
(b − a)2

12

Normal Written: N(µ, σ2). What it is: the distribution that comes out of the Central
Limit Theorem.

f(x) =
1

σ
√

2π
e−

1

2
(x−µ

σ
)
2

F (x) = Φ
(

x − µ

σ

)

E[X] = µ

Var(X) = σ2

Addition of normals. Adding independent normal random variables gives back another
normal random variable. If Xi ∼ N(µi, σ

2
i ), and X = X1 + X2 + . . . + Xn, then

X ∼ N(
∑

i

µi,
∑

i

σ2
i ).

For X,Y independent N(0, 1) random variables, the joint distribution of (X,Y ) is rota-
tionally invariant.

Normal random variables are symmetric around µ, and so Φ(x) = 1 − Φ(−x).
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Exponential Written: Exp(λ). What it is: when events occur continuously over time at
rate λ, this is the time you have to wait for the first event to occur.

f(t) = λe−λt1(0,∞)

F (t) =

{

1 − e−λt a ≥ 0
0 a < 0

E[X] =
1

λ

Var(X) =
1

λ2

7 How to use the Central Limit Theorem (CLT)

The CLT says that if X1, X2, . . . are identically distributed random variables and Zn =
X1 + . . . Xn, then

lim
n→∞

P





Zn − E[Zn]
√

Var(Z)
≤ a



 = Φ(a).

We use it as an approximation tool for Z = X1 + . . . Xn:

P





Z − E[Z]
√

Var(Z)
≤ a



 ≈ Φ(a).

Often we are interested in approximating the probability of things like P (Z ≤ b) where
Z = X1 + . . . Xn. This takes two steps.

Step 1 If Z is integral, apply the half integer correction. So instead of P (Z = i) we write
P (i− 0.5 < Z < i + 0.5). This makes P (Z ≤ b) go to P (Z ≤ b + 0.5) (assuming b is also an
integer).

Step 2 Subtract off E[Z] and divide by the square root of Var(Z). So

P (Z ≤ b + 0.5) = P





Z − E[Z]
√

Var(Z)
≤ b + 0.5 − E[Z]

√

Var(Z)



 .

Step 3 Apply the CLT and say

P (Z ≤ b) ≈ Φ





b + 0.5 − E[Z]
√

Var(Z)



 .
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