HOMEWORK 2 STA701.01, Statistical Inference Fall Semester, 2014

Due: Thurs Sept 18th, 2014 Let \mathcal{A} be the space of actions.

1 Read Section 1.6 on the book and do exercise 3 on Section 1.5, exercises 1, 2, and 3 on Section 1.6, and exercises 1, 2, 3, 4 on Section 1.7.

- **2** Let $\Theta = \mathcal{A} = \{1, 2\}$. Let
 - Urn 1: 10 red balls, 20 blue balls, 70 green balls.
 - Urn 2: 40 red balls, 40 blue balls, 20 green balls.

One ball is drawn from one of the two urns. Problem: decide which urn the ball came from if the loss function $L(\theta, a)$ are given by:

$$\begin{array}{c|cccc} \theta \backslash a & 1 & 2 \\ \hline 1 & 0 & 10 \\ 2 & 6 & 0 \\ \end{array}$$

Let $\delta = (\delta_R, \delta_B, \delta_G)$ with δ_X = probability of choosing urn 1 if color X = x is observed.

- 1. Calculate the risk function of such decision rules.
- 2. Plot the nonrandomized risk set S_0 and the risk set S.
- 3. Find the minimax.
- 4. Find the Bayes rule if we have the prior $\tau = (6/11, 1 6/11)$.

3 Suppose an unknown parameter θ is either 1/2 or 1/3. Our goal is to estimate θ with zero-one loss using the information from a single binary(θ) random variable X. Consider the following four non-randomized decision rules:

$$\begin{array}{rcl} \delta_1(X) &=& 1/3 \\ \delta_2(X) &=& 1/(3-X) \\ \delta_3(X) &=& 1/2 \\ \delta_4(X) &=& 1/(2+X). \end{array}$$

- 1. Find the risk functions of each non-randomized decision rule (there are only two possible values of θ).
- 2. Plot the nonrandomized risk set S_0 and the risk set S.
- 3. Find the minimax.
- 4. Find the Bayes rule if we have the prior $\tau = (1/2, 1/2)$.

4 Suppose the parameter space Θ is finite. Show that the risk set S is a convex hull of all points in the nonrandomized risk set S_0 .