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Figure 1: Ultrametric ML time trees for plant and endophyte data sets in
[Schardl et al, 2008] constructed via BEAST. Hosts and their endophytes are
indicated by dashed lines. Numeric values on nodes represent their posterior
probabilities estimated by BEAST.
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Figure 2: Ultrametric ML time trees for gopher and louse data sets [Hafner,
1990] constructed via BEAST. [Page and Hafner, 1994] and [Huelsenbeck
et. al., 2000] studied these data sets.
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Cophylogeny

Suppose we have two sets of multi-species sequence data H and P . A
common task in phylogenetics is to infer a tree TH for H, or TP for P .

Let TH be the space of trees on H and TP be the space of trees on P .

A cophylogeny is a pair of trees (TH, TP ) ∈ TH × TP . Usually in a
cophylogeny, the trees TH and TP are related.

Example: H is a set of host species, and P is a set of corresponding
parasite species. Or, H is a set of species, and P is a set of corresponding
orthologous genes in the species.

Want: Propose a research program of extending ideas of phylogeny to
cophylogeny.
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6 different processes in a host–parasite association

Even though two phylogenetic trees are coevolved, tree topologies of TH

and TP might differ.

host

parasite

(a)

(d)

(b)

(e)

(c)

(f)

cospeciation host switch independent speciation

extinction "missing the boat" failure to speciate
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Geometry of Cophylogenetic trees

Definition: A subset S ⊂ TH × TP is called a space of cophylogenetic

trees.

Definition: The projection STH
= {TP : (TH, TP ) ∈ S} ⊂ TP is called the

space of cophylogenetic trees given TH.

Example: If we assume a perfect codivergence, that is, TH and TP are
identical (for e.g., [Huelsenbeck et. al., 2000]), the space of cophylogenetic
trees is the diagonal {TH = TP} of TH × TP

Alg Stat 6



More examples of cophylogenies...

• Coalescent cophylogeny: TH is a species tree, and TP is a gene tree
generated from TH according to the coalescent process.

• ≤ ǫ-distance cophylogeny: If TH, TP are in the space of cophylogenetic
trees, then d(TH, TP ) ≤ ǫ, where d is a metric on tree space.

• Example metrics on tree space:

– d(TH, TP ) := geodesic length between TP and TH in tree space.
(Studied by M. Owen, also developed software for geodesic length)

– d(TH, TP ) := quartet distance
– d(TH, TP ) := SPR distance
– d(TH, TP ) := NNI distance
– d(TH, TP ) := R-F symmetric difference
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The space of k-interval cospeciation

In host-parasite evolution, a speciation in host is likely to be followed by
a reactionary speciation in parasite, and often vice versa. Combinatorially,
this assumption can be made explicit by assuming that for each pair of host
species A, B, and corresponding parasite species a, b, the number of edges
between A, B is within k of the number of edges between a, b. We say such
a cophylogeny satisfies k-interval cospeciation.
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Example
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A k-interval distance between these trees is 2 and the difference between
each pair of leaves can be written as a matrix:
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The space of 1-interval cospeciation

Theorem [Huggins, Owen, and Y., 2009]

If k = 1, then for any given host tree TH, a parasite tree TP satisfies
1-interval cospeciation if and only if TH and TP differ by at most 1 rotation.

Proposition [Huggins, Owen, and Y., 2009]

Under the 1-interval cospeciation with the given host tree TH in taxa
{1, 2, · · · , n}, if a tree TP in taxa {1′, 2′, · · · , n′} contains a quartet
[i′1, i

′
3; i

′
2, i

′
4] or [i′1, i

′
4; i

′
2, i

′
3], and if the corresponding quartet in TH

generated by their hosts {i1, i2, i3, i4} is [i1, i2; i3, i4], then TP cannot
be the parasite tree for TH.
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Example

a A b B c C

Figure 3: A parasite fails to speciate and then follows after host’s speciation.
These events are described with notation in [Pages, 2003].
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Example

Example: k = 1 and n = 4
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Figure 4: Host tree.
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Example...

There are 5 possible parasite tree topologies.
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Open Problems
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Cophylogenetic invariants
Phylogenetic invariants are a well-stuided subject in [ASCB], and can be
generalized to cophylogeny.

Fix a group-based model for gene sequence evolution. Suppose we know
a species tree (or a host tree) TH and we assume that gene trees have
to be similar to the species tree (e.g., within a prescribed NNI distance or
k-interval).

Consider the ideal of invariants ITP
of phylogenetic invariants for each

compatible gene-tree topology TP ∈ STH
.

The intersection of these ideals (over all gene trees compatible with the
species tree) gives invariants which describe gene-species tree compatibility.

Question: Can we describe/understand some generators of the intersection
ideal, in terms of the original species tree – without resorting to a brute
force computation of the intersection ideal?
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Space of trees

Question: Is there any interesting space of cophylogenetic trees which can
be described geometrically?

Example: The “topology diagonal”

Let S = {(DH, DP ) : DH is a tree metric for TH and DP is a tree metric
for TP such that TH, TP have the same tree topology}.

Proposition [Huggins, Owen, R, 2009]

{(DH, DP )|DH, DP are tree metrics for the same tree topology}

where the host/parasite trees are allowed to have different branch lengths.
Then this space is eqvuivalently {(DH, DP )| 4-point cond holds for DH,
and holds for DP , and holds for DH + DP}.
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Constrained phylogenetic reconstruction

If host/parasite trees are reconstructed independently, then the disagreement
between the reconstructed trees is exaggerated, because disagreement was
not penalized during the reconstruction.

Question 1: Want to formulate minimum evolution or ML reconstruction
methods which include penalties for co-evolution events that change tree
topology?

Question 2: Want to develop distance-based methods for fast joint
reconstruction, and we would like to understand them geometrically. One
could also formulate projecting a pair of dissimilarity maps (DH, DP ) onto a
constrained space of cophylogenetic trees. (e.g., NJ method for constrained
phylogenetic reconstruction [Matsen, 2009])
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Statistical/machine learning
methods for cophylogeny
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Distances between trees

We are applying distances on tree structures to assess codivergences in
related trees (such trees might be for hosts and parasites (or symbionts), or
they may be for distinct, putatively orthologous genes in genomes).

In order to use tools such as linear classifiers, we need biologically meaningful
inner products on trees.
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Why we care?

If we find some outlier trees, then they might represent noncanonical
evolutionary processes such as

• Horizontal transfer of genes between species.

• Ancient polymorphisms maintained by balancing selection.

• Paralogs that may be difficult to distinguish from orthologs by other
means.

• Radically different evolutionary rates between genes.

If we find multiple clusters, then they might represent recombinations.
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Inner products on trees

We are particularly interested in distances d(T1, T2) on trees which can be
expressed by an inner product K in some vector space representation, i.e.
d(T1, T2) =

√

{K(T1 − T2, T1 − T2)}. Examples include

• the l2 inner product on R
(n

2)
+ , the space of dissimilarity maps

• the l2 inner product on R
(n

2)
+ , the space of edge matrices of trees

(k-interval).

• The l2 inner product on R
3·(n

4)
+ , the space of quartets whose i th element

is 1 if the tree T has the particular quartet and is 0 if not.
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Example: k-intervals
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Recall: a k-interval distance between these trees is 2 and the difference
between each pair of leaves can be written as a matrix:
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The distance is the l2 norm of this vector.
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Comparing distributions instead of point estimates of

trees

Given host/parasite (or genes) sequence data H and P , respectively, a
standard method for comparing host/parasite trees is to compute a fixed
host tree T̂H and parasite tree T̂P , and then compute d(T̂H, T̂P ), and then
take d(T̂H, T̂P ) to be the true distance between host and parasite (or gene)
trees.

But there is uncertainty in host/parasite trees, and point estimates of trees
can be unreliable. Given distributions DH and DP on host and parasite trees
(conditional on host/parasite sequence data), we could instead compare the
distributions.
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Example: Difference-of-means testing
Given distributions DH and DP , a classical quantity of interest in statistics
is the difference of means: d(EDH

TH, EDP
TP ).

We can perform difference of means testing for host and parasite tree
distributions

Suppose we have distance d(TH, TP ) defined between trees, given by an
inner product

d(TH, TP ) =
√

K(TH − TP , TH − TP )

in some feature space.

If we define d(DH, DP ) := d(EDH
TH, EDP

TP ), we obtain a metric on tree
distributions. Note this can be written entirely in terms of the inner product
K:
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d(DH, DP )2 :=

−2EDH×DP
K(TH, TP ) + EDH×DH

K(T
{1}
H

, T
{2}
H

) + EDP×DP
K(T

{1}
P

, T
{2}
P

)

Upshot: If we have an oracle to compute K(), then we can estimate
d(DH, DP )2 via MCMC without writing down vector representations of
trees or means. This is an example of a kernel method in machine learning.

Important when vector space is high dimensional but inner product can be
computed quickly. For example if feature vectors are quartet indicators,
then dimension is O(n4), but inner product can be computed in O(n log n)
time.
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We would like to be able to determine whether d(DH, DP ) is significantly
greater than zero.

Now we have the statistical hypothesis:

H0 : d(DH, DP )2 = 0

H1 : d(DH, DP )2 > 0
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Bootstrap

We can bootstrap columns of H to obtain bootstrapped sets of hypothetical
host data Ĥ, and similarly bootstrap P to obtain sets of hypothetical parasite
data P̂ .

Then we determine whether d(DH, DP ) looks significantly large by counting
the number of bootstraps satisfying

d(DH, DP ) < d(DH, D
Ĥ

) + d(DP , D
P̂
) for each bootstrap Ĥ, P̂ .

The p-value for our statistical test is the frequency of the counting.
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Figure 5: Ultrametric ML time trees for plant and endophyte data sets in
[Schardl et al, 2008] constructed via BEAST. Hosts and their endophytes are
indicated by dashed lines. Numeric values on nodes represent their posterior
probabilities estimated by BEAST.
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Figure 6: Ultrametric ML time trees for gopher and louse data sets [Hafner,
1990] constructed via BEAST. [Page and Hafner, 1994] and [Huelsenbeck
et. al., 2000] studied these data sets.
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Results

60, 000 sampled tree via MCMC and 100 bootstrap with k-interval kernel.

For plant-endophytes data sets we got the p-value < 0.001.

For gopher and louse data sets we got the p-value = 0.14.

Applications to the fungal housekeeping genes: From Kerry O’Donnell,
with the Epichloë festucae genome: gene ATUB, BTUB, EF1alpha, HIS,
ITS, MAT, PHO84, RED, TRI101, TRI3, URA.

The TRI3 and TRI101 genes are reported to conflict with each other, even
though they are in the same gene cluster and involved in the same process:
synthesis of toxic trichothecenes.

Our test shows that the p-value = 0.02. Also we found some small p-value
(0.20) between ATUB and ITS, but we think it is because the ITS tends to
be badly homoplastic.
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Other kernel methods for comparing tree distributions

• Rather than test for difference in means, we can also find a plane which
gives the “best separation” between host and parasite tree distributions.

• Method: MCMC sample a cloud of host trees, and a cloud of parasite
trees, and then find the best separating hyperplane (linear decision
boundary) between the clouds, in some vector space.

• In machine learning, SVMs can be used for this task. SVMs can be run
as a kernel method: decision boundary is expressed in terms of host and
parasite trees, without ever writing down explicit vector representations.

• Splitting hyperplane tells us how the host and parasite tree distributions
are different: what features (e.g. which pairs of taxa, or which
quartets) give the highest disagreement between host and parasite tree
distributions.
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Future work

SVMs for tree distributions

Can we define similar statistical/machine learning methods, using geodesic
distance measure?

Are there other more on the space of cophylogenetic trees which are
“biologically meaningful”?
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Workshop on Evolutionary Biology at SAMSI, NC on April 2nd and 3rd,
2009 organized by Peter Huggins, Erick Matsen, R.Y.

Algebraic Biology 2009 at SAMSI, NC on June 21st to 23rd, 2009
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