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ABSTRACT
The Neighbor-Joining algorithm is a recursive procedure for
reconstructing trees that is based on a transformation of
pairwise distances between leaves. We present a general-
ization of the neighbor-joining transformation, which uses
estimates of weights of m-leaf subtrees rather than pairwise
distances in the tree. This leads to an improved neighbor-
joining algorithm whose total running time is still poly-
nomial in the number of taxa. On simulated data, the
method outperforms other distance-based methods, and in
some cases improves over fastDNAml.

We have implemented neighbor-joining for subtree weights
in a program called MJOIN which is freely available under the
Gnu Public License at
http://bio.math.berkeley.edu/mjoin/
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1. INTRODUCTION
Distance based methods for phylogenetic reconstruction

are based on the observation that edge weighted phyloge-
netic X-trees (trees that have a set X as their leaves, all
interior vertices of degree at least three and non-negative
weights wT : E(T ) → R>0 on every edge) can be encoded
by certain metrics on X.

Theorem 1 (Four-point condition [5]). Given a
metric D : X ×X → R there exists an edge weighted phylo-
genetic X-tree T such that D(i, j) =

P
e∈E(T ) wT (e) iff

D(i, j) + D(k, l) ≤ max(D(i, k) + D(j, l), D(j, k) + D(i, l))

for every four leaves i, j, k, l. Furthermore, T is unique.

Such metrics are called tree metrics and many methods have
been proposed for projecting dissimilarity maps (functions
D : X × X → R with D(x, x) = 0 and D(x, y) = D(y, x))
to “nearby” tree metrics. The neighbor-joining algorithm,
introduced by Saitou and Nei [15] is the most popular and
widely used. It is particularly convenient for reconstructing
phylogenetic trees when the size of X is large and methods
that require an exhaustive exploration of the space of trees
are computationally prohibitive.

There are four parts to the neighbor-joining algorithm (see
algorithm 1):

1. A procedure for estimating pairwise distances between
elements of X.

2. A criterion for identifying neighboring pendant edges
(cherries) in a tree.

3. A recursive reduction.

4. A branch length estimation formula.

The cherry picking criterion is based on the following the-
orem:

Theorem 2 (Saitou-Nei [15], Studier-Keppler [17]).
If D is a tree metric and

QD(i, j) = (n− 2)D(i, j)−
X
k 6=i

D(i, k)−
X
k 6=j

D(j, k)

then the pair x, y that minimizes QD(x, y) is a cherry in the
tree.



Although the exact formula for Q may seem a bit myste-
rious at first, it is a very natural criterion. For example,
the neighbor-joining algorithm which is based on it is con-
sistent (i.e. if D is a tree metric then the algorithm returns
the tree), the input order of the taxa does not change the
outcome of the algorithm, and the criterion is a linear func-
tion of the distances. Bryant [3] has recently shown that
the neighbor-joining selection criterion Q(i, j) is the only
one satisfying the properties above. Furthermore, Gascuel
[8] has shown that the neighbor-joining criterion can be in-
terpreted as greedily minimizing a balanced minimum evo-
lution criterion which provides added understanding as to
why it has been a very successful method.

The recursive reduction step and branch length estimation
formula have been examined extensively and have resulted
in a number of improvements to the basic neighbor-joining
algorithm. For example, the reduction step has been ex-
tensively investigated and has been shown to be optimal
when variances on the estimates are unknown, yet improv-
able when variance information is incorporated [6, 7, 8].

Algorithm 1: Neighbor-joining algorithm

Data : A set X together with sequences
corresponding to the elements of X

Result: Edge weighted phylogenetic X-tree T
for i, j ∈

`
X
2

´
do

Compute the maximum likelihood distance D(i, j)
between taxa i and j;

end
while |X| > 2 do

for i, j ∈
`

X
2

´
do

Set QD(i, j) = (|X| − 2)D(i, j)−P
k∈X\{j} D(i, k)−

P
k∈X\{i} D(kj).

end
Choose a pair x, y ∈ X that minimizes QD(x, y);
Add a new element z|X| to the set X and remove x
and y;
Let u|X| = x and v|X| = y.;
Set D(i, z|X|) = 1

2
(D(i, x) + D(i, y)−D(x, y));

end
while |X| ≤ n− 2 do

Set D(u|X|, z|X|) = 1
|X|−2

P
k 6=u|X|,v|X|

D(u|X|, k) +

D(u|X|, v|X|)−D(k, v|X|);
Set D(v|X|, z|X|) = 1

|X|−2

P
k 6=u|X|,v|X|

D(v|X|, k) +

D(u|X|, v|X|)−D(k, u|X|);
Add u|X| and v|X| into X.

end

Nevertheless, the main problem with neighbor-joining scheme
is that in the first step, the distances are estimated from
noisy data and the resulting dissimilarity map is therefore
very unlikely to be a tree metric. For biological sequences,
the pairwise distance estimates are typically based on a
probabilistic model of evolution such as the Jukes-Cantor
[10] model: given two sequences of length L with k differ-
ences between them, the distance is estimated as

DJC = −3

4
ln

„
1− 4

3
p

«

where p = k
L

. The variance is given by

V ar(DJC) ≈ p(1− p)

L(1− 4
3
p)2

.

Notice that as p → 3
4

the variance approaches infinity, which
reflects the fact that long branch lengths are difficult to re-
solve with finite sequences. This phenomenon exists when-
ever branch lengths are estimated using Markov models of
evolution. Although the neighbor-joining algorithm is con-
sistent, the fact that dissimilarity maps estimated from data
are not tree metrics means that there is no guarantee that
the algorithm produces the correct tree.

A number of attempts have been made to understand the
good results obtained with the neighbor-joining algorithm,
especially given the problems with the inference procedures
used for estimating pairwise distances. One of the main
results is the following:

Theorem 3 (Atteson [1]). Neighbor-joining has l∞
radius 1

2
.

This means that if the distance estimates are at most half the
minimal edge length of the tree away from their true value
then the neighbor-joining algorithm will reconstruct the cor-
rect tree. However, as we will see in section 4, this criteria
is rarely attained even in cases where neighbor-joining has
a high success rate.

Despite the unavailability of precise criteria for judging
the success of neighbor-joining, there have been efforts aimed
at improving the distance estimates which form the input to
the algorithm. For example, the TRIPLEML method [14]
improves on the pairwise distance estimates by adjusting
them using additional taxa: for each pair of leaves, a third
leaf is selected and an approximate (numerical) maximum
likelihood estimate for the branch lengths of the three leaf
subtree is computed from which the pairwise distance of the
original leaves is estimated. In the WEIGHBOR algorithm
[2], the neighbor-joining criterion is replaced so as to weight
long branch lengths. These methods, and others similar
to them, have the drawback that either their performance
remains limited by the inherent uncertainty in pairwise dis-
tance estimates, or else the simple, natural, and mathemat-
ically justified structure of the neighbor-joining algorithm is
abandoned.

It was suggested in [13] that an alternative encoding of
edge weighted phylogenetic X-trees may be used to improve
phylogenetic reconstruction while preserving many of the
properties of distance based methods. Let Xm denote the
mth Cartesian product of X and

`
X
m

´
all the m element

subsets of X. For a phylogenetic X-tree T with R ⊂ X let
[R] denote the smallest subtree of T spanning R.

Theorem 4 (Pachter-Speyer [13]). Let T be a phy-
logenetic X-tree (|X| = n) and m ≥ 2 be an integer. Let n ≥
2m−1, and let D : Xm → R be the map R 7→

P
e∈[R] wT (e)

for each R ∈
`

X
m

´
. Then T is determined by the set of values

D(R) (and this is not true if 2m− 2 = n > 2).

Instead of reconstructing trees from dissimilarity maps (m =
2), it was suggested that maximum likelihood methods could
be used to more accurately estimate the m-subtree weight



values D(R) for every R ⊂ X, |R| = m. Such estimates
result in

`
n
m

´
values which form an m-dissimilarity map,

i.e. a function D : Xm → R with D(x, x, . . . , x) = 0
and D(x1, . . . , xm) = D(xi1 , . . . , xim) for any permutation
(i1, . . . , im) ∈ Sm. The problem is then to develop consis-
tent tree reconstruction algorithms that find a tree whose
m-subtree weights are “close” to the m-dissimilarity map.

In this paper we propose a practical, efficient method for
tree reconstruction based on m-dissimilarity maps. We be-
gin by refining theorem 4 and show that even if n < 2m− 1
partial information about the tree is recoverable. We then
describe a neighbor-joining algorithm whose cherry picking
criterion makes use of m-subtree weights. The algorithm
is a generalization of standard neighbor-joining (when plug-
ging m = 2 into the formulas the algorithm simplifies to
neighbor-joining). It also satisfies many of the same prop-
erties: the method is consistent, the input order of the taxa
does not change the outcome, and the cherry picking crite-
rion is a linear function of the distances. In section 4 we
argue that it is more accurate than neighbor-joining, and
the fact that it is polynomial in the number of taxa means
that it is practical for the same kinds of large problems for
which neighbor-joining is used. In fact, the running time for
m = 3 is O(n3), the same as for standard neighbor-joining
(only with a higher constant for the initial estimation of the
weights).

Our main results depends on yet another encoding of phy-
logenetic X-trees. Given four leaves i, j, k, l in a phyloge-
netic X-tree, we use the notation

|(i, j; k, l)| := |E([{i, j}] ∩ [{k, l}])|.

We say that (i, j; k, l) is a tree quartet if |(i, j; k, l)| = ∅. If
q(T ) denotes the set of tree quartets then there is a partial
order ≤ on all X-trees where T ′ ≤ T iff q(T ′) ⊆ q(T ).

Theorem 5 (Buneman [5, 16]). Let T and T ′ be two
phylogenetic X-trees. Then q(T ) = q(T ′) iff T ∼= T ′.

2. TREE METRICS FROM M-WEIGHTS
Our main results about m-subtree weights are based on

a mapping that associates to any m-dissimilarity map a 2-
dissimilarity map which, for m-subtree weights from a tree,
preserves a certain subforest. This subforest is character-
ized by containing those edges whose removal results in suf-
ficiently small components in the tree. Specifically, for a tree
T , the removal of any edges results in two components, and
we denote by T≤k the subforest of T whose edge set consists
of edges whose removal results in one of the components
having size at most k. For example T≤1 consists of all the
pendant edges (adjacent to leaves), and T≤k = T for any
k > n−1

2
because the removal of any edge in a tree leaves a

component of size at most n−1
2

.

Theorem 6. Let D be an m-dissimilarity map on a set
X of size n and define

S(i, j) =
X

Y ∈(X\{i,j}
m−2 )

D(i, j, Y ). (1)

If D(R) =
P

e∈[R] wT (e) for every R ∈
`

X
m

´
in some edge

weighted phylogenetic X-tree T , then S is a tree metric. Fur-
thermore, if T ′ is the tree corresponding to this tree metric,

then T ′ ≤ T with T ′
≤n−m

∼= T≤n−m and there is an invert-
ible linear map between the edge weights in T≤n−m and the
corresponding edge weights in T ′

≤n−m.

Observe that for an edge weighted phylogenetic X-tree, T ,
any linear combination of the m-subtree weights is a linear
combination of the edge weights wT (e) in the tree. For a

linear function on the m-subtree weights F : R(n
m) → R, let

vF (e) denote the coefficient of wT (e) in F . For instance,
vS(i,j)(e) denotes the coefficient of wT (e) in S(i, j). Note
that vF+G(e) = vF (e)+vG(e). We will also use the notation
Li(e) to denote the set of leaves in the component of T − e
that contains leaf i. Pab is the path from vertex a to b.

Lemma 7. Given a pair of leaves a, b and any edge e we
have

vS(a,b)(e) =

8<:
`

n−2
m−2

´
e ∈ Pab;`

n−2
m−2

´
−
`|La(e)|−2

m−2

´
e /∈ Pab.

Proof: If e is on the path from a to b, then it will be
included in all the subtrees [i, j, Y ]. If e is not on the the
path from a to b, then the only way it will be excluded is
if all the other leaves fall on the a side of e (which is the
same as the b side). That is, if X ⊂ La(e)− i, j. There are`|La(e)|−2

m−2

´
such sets.

Lemma 8. Given a quartet (a1, a2; a3, a4) in T with inte-
rior vertices b1 and b2 (figure 1), then,

vS(a1,a2)+S(a3,a4)(e) =8>>>>><>>>>>:

2
`

n−2
m−2

´
−
`n−|Lai

(e)|−2

m−2

´
e ∈ Paibdi/2e ;

2
`

n−2
m−2

´
−
`|La1 (e)|−2

m−2

´
−
`|La3 (e)|−2

m−2

´
e ∈ Pb1b2 ;

2
`

n−2
m−2

´
− 2
`|La1 (e)|−2

m−2

´
e /∈ [a1a2a3a4].

vS(a1,a3)+S(a2,a4)(e) =8>>>>><>>>>>:

2
`

n−2
m−2

´
−
`n−|Lai

(e)|−2

m−2

´
e ∈ Paibdi/2e ;

2
`

n−2
m−2

´
e ∈ Pb1b2 ;

2
`

n−2
m−2

´
− 2
`|La1 (e)|−2

m−2

´
e /∈ [a1, a2, a3, a4].

and
vS(a1,a4)+S(a2,a3) = vS(a1,a3)+S(a2,a4)

Proof: We use the fact that vS(a1,a2)+S(a3,a4) = vS(a1,a2)+
vS(a3,a4) and apply the previous lemma. We also note that
for e /∈ [{a1, a2, a3, a4}], La1(e) = Lai(e) for all i.

Corollary 9. For a quartet (a1, a2; a3, a4), we define

S(a1, a2; a3, a4) = S(a1, a2) + S(a3, a4)

−S(a1, a3)− S(a2, a4).

Then,

vS(a1,a2;a3,a4)(e) =8<: −
`|La1 (e)|−2

m−2

´
−
`

n−|La1 (e)|−2

m−2

´
e ∈ Pb1b2 ;

0 otherwise.



a1

b1

a4

a3

a2

b2

Figure 1: A quartet (a1, a2; a3, a4)

Corollary 9 implies that S satisfies the four-point condi-
tion (1), although it may be that vS(a1a2;a3a4)(e) = 0 which
means that there are interior edges in T ′ which have been
collapsed (with length equal to 0). Suppose, however, that
(a1a2; a3a4) ∈ q(T ) and [{a1, a2, a3, a4}] is in a connected
component of T≤n−m (in other words the subtree span-
ning the quartet consists of edges whose removal leaves a
small component). This means that if e ∈ Pb1b2 then either
La1(e) ≥ m or n − La1(e) ≥ m and so S(a1, a2; a3, a4) < 0
which means that (a1, a2; a3, a4) ∈ q(T ′). Therefore q(T ′) ⊂
q(T ) and it follows from theorem 5 that T ′

≤n−m
∼= T≤n−m.

It remains to show that there is an invertible linear map
between the edge weights in the forests T≤n−m and T ′

≤n−m:

Lemma 10. If e is an internal edge of T≤n−m with e′ the
corresponding edge in T ′ then

wT ′(e′) =
1

2

  
|La(e)| − 2

m− 2

!
+

 
|Lc(e)| − 2

m− 2

!!
wT (e)

where a is a leaf in one component of T − e and c a leaf in
the other.

Proof: Since e is an internal edge, we may choose a, b, c
and d such that e is the only edge on the splitting path of
(a, b; c, d). Then

wT ′(e′) =
1

2
S(a, b; c, d)

=
1

2

  
|La(e)| − 2

m− 2

!
+

 
|Lc(e)| − 2

m− 2

!!
wT (e).

Corollary 11.

wT (e) =
2wT ′(e′)“`|La(e)|−2

m−2

´
+
`|Lc(e)|−2

m−2

´”
which is well defined if e ∈ T≤n−m.

Lemma 12. Denote the edges adjacent to the leaves by
e1, . . . , en (with corresponding edges in T ′ e′1, . . . , e

′
n) and

the set of internal (non-pendant) edges by int(E(T )). Let

Ci =
X

e∈int(E(T ))

  
n− 2

m− 2

!
−

 
|Li(e)| − 2

m− 2

!!
wT (e)

and let A be the matrix 2
`

n−3
m−2

´
I +

`
n−3
m−3

´
J. Then

0B@ wT ′(e′1)
...

wT ′(e′n)

1CA =
1

2
A

0B@ wT (e1)
...

wT (en)

1CA+
1

2

0B@ C1

...
Cn

1CA
Proof: The interior vertex of an edge e also adjacent to

a leaf i is incident to two other edges. Choose a leaf a such
that Pia intersects one of the edges, and b such that Pib

intersects the other. Then

wT ′(e′) =
1

2
(S(i, a) + S(i, b)− S(a, b))

which after some algebra gives the above lemma.

Corollary 13.0B@ wT (e1)
...

wT (en)

1CA = A−1

0B@ 2wT ′(e′1)− C1

...
2wT ′(e′n)− Cn

1CA

where A−1 = 1

2(n−3
m−2)

“
I− m−2

(m−1)(n−2)
J
”
.

In order to recover wT (e) for every edge, we start by cal-
culating the interior edge weights, after which we can cal-
culate the values Ci. The matrix A is always invertible if
m ≤ n− 1.

3. NEIGHBOR-JOINING WITH SUBTREE
WEIGHTS

Theorem 6 forms the basis of the neighbor-joining algo-
rithm with subtree weights. First, we need a generalization
of the neighbor-joining criterion:

Theorem 14 (Cherry Picking Theorem). Let T be
an edge weighted phylogenetic X-tree with |X| = n let m be
an integer satisfying 2 ≤ m ≤ n− 1. Let D : Xm → R>0 be
the m-dissimilarity map corresponding to the weights of the
subtrees of size m in T . If QD(x, y) is a minimal element
of the matrix

QD(i, j) =

„
n− 2

m− 1

« X
Y ∈(X\{i,j}

m−2 )

D(i, j, Y )

−
X

Y ∈(X\{i}
m−1 )

D(i, Y )−
X

Y ∈(X\{j}
m−1 )

D(j, Y )

then x, y is a cherry in the tree T .

Note that when m = 2 this is exactly the neighbor-joining
criterion (Q-criterion of theorem 2) as described by Studier
and Keppler [17].

Proof: Let S(i, j) =
P

Y ∈(X\{i,j}
m−2 ) D(i, j, Y ). By theorem



6 we know that S is a tree metric. Observe that

QD(i, j) =
n− 2

m− 1
S(i, j)−

X
Y ∈(X\{i}

m−1 )

D(i, Y )

−
X

Y ∈(X\{j}
m−1 )

D(j, Y ))

=
1

m− 1
((n− 2)S(i, j)

−
X

k

X
Y ∈(X\{i,k}

m−2 )

D(i, k, Y )

−
X

k

X
Y ∈(X\{j,k}

m−2 )

D(j, k, Y ))

=
1

m− 1
((n− 2)S(i, j)−

X
k

S(i, k)

−
X

k

S(j, k))

=
1

m− 1
QS(i, j)

In other words, QD(i, j) is just a scalar multiple of the
neighbor-joining criterion for the tree metric S. By theorem
2 (m = 2) we know that the minimal element of QS(i, j) is
a cherry in T ′ (the tree corresponding to the tree metric S).
Since m ≤ n−1, we know that T ′

≤1 is isomorphic to T≤1 and
therefore the minimal element of QD(i, j) is a cherry.

It follows from theorem 6 that if m ≤ n+1
2

then the
neighbor-joining algorithm applied directly to S is topologi-
cally consistent, i.e. will reconstruct the correct tree topol-
ogy starting with the weights of all subtrees of size m. The
fact that there is an invertible linear map between for the
edge weights, means that we can reconstruct T , thus lead-
ing to a consistent neighbor joining algorithm with subtree
weights (algorithm 2).

The running time for computing the weights of the sub-
trees is O(Lnm) where l is the length of the alignment and
the computation of S(i, j) is O(nm) (both steps are trivially
parallelizable). The subsequent neighbor-joining is O(n3)
and edge weight reconstruction is O(n2). It is interesting to
note that for fixed L the running time of the algorithm is
O(n3) for both m = 2 and m = 3.

4. RESULTS
We have implemented the neighbor-joining algorithm for

subtree weights in a program called MJOIN. The implementa-
tion incorporates the fastDNAml [11] program for computing
the subtree weights, and allows the user to select the sizes
of the subtrees to be used.

We tested MJOIN with simulated data on the two param-
eter family of trees described by Ota and Li [12]. These
are trees for which neighbor-joining has difficulty in resolv-
ing the correct topology. We simulated 1000 data sets on
each of the two tree shapes, T1 and T2 (Figures 2, 3) at the
three edge length ratios, a/b = 0.01/0.07, 0.02/0.19, and
0.03/0.42. This was repeated twice for sequences of length
500 and 1000BP. We also repeated the runs with the Kimura
2-parameter model and obtained similar results (not shown).

Table 1 notes the success rate of MJOIN for m=2, 3, and

Algorithm 2: Neighbor-joining algorithm with subtree
weights

Data : A set X together with sequences
corresponding to the elements of X

Result: Edge weighted phylogenetic X-tree T
for R ∈

`
X
m

´
do

Estimate D(R) using a (numerical) maximum
likelihood method;

end

for i, j ∈
`

X
2

´
do

Set S(i, j) =
P

Y ∈(X\{i,j}
m−2 ) D(i, j, Y );

end
Apply algorithm 1 (neighbor-joining) to the “distances”
S(i, j) resulting in tree T ′; Set T = T ′;

Set wT (e) =
2wT ′ (e′)“

(|La(e)|−2
m−2 )+(|Lc(e)|−2

m−2 )
” ;

for 1 ≤ i ≤ n do

Set Ci =
P

e∈int(E(T ))

“`
n−2
m−2

´
−
`|Li(e)|−2

m−2

´”
wT (e);

end

Set

0B@ wT (e1)
...

wT (en)

1CA =

1

2(n−3
m−2)

“
I− m−2

(m−1)(n−2)
J
”0B@ 2wT ′(e′1)− C1

...
2wT ′(e′n)− Cn

1CA;

b

a

a
a

a

a
b

b

b

b

b

b

b

Figure 2: The tree T1.

4 (denoted by NJ(m)) for each data set and compares these
results to the success rate of other tree reconstruction meth-
ods. It is clear from the table that as m increases, the
success rate of MJOIN increases. Hence, for m > 2, MJOIN

consistently out-performs neighbor-joining (NJ(2)). For the
T1 tree, NJ(4) out-performs even fastDNAml.

Figure 4 shows the standard deviation in the m-weights.
We believe it is the relative improvement in the m-weight
errors that is contributing to the improved performance of
MJOIN as m increases. Checking the l∞ distance of the 2-
distance maps from the true tree metric, we find that even
in cases where neighbor-joining has a high success rate, the
number of distance maps that satisfy Atteson’s condition is
fewer than 1%. This suggests that the success of neighbor
joining is due to other favorable features of the projection,
and we believe that a deeper understanding of neighbor join-
ing is necessary in order to rigorously understand the reasons
for the improvements with m-subtree weights.



Tree length (bp) a/b

T1 500 0.01/0.07
0.02/0.19
0.03/0.42

1000 0.01/0.07
0.02/0.19
0.03/0.42

T2 500 0.01/0.07
0.02/0.19
0.03/0.42

1000 0.01/0.07
0.02/0.19
0.03/0.42

NJ(2) NJ(3) NJ(4) BN WE NM QP FM

0.69 0.76 0.82 0.73 0.72 0.80 0.80 0.78
0.53 0.58 0.73 0.52 0.47 0.64 0.70 0.66
0.11 0.12 0.23 0.14 0.13 0.16 0.29 0.11
0.94 0.96 0.98 0.96 0.92 0.97 0.94 0.97
0.87 0.90 0.96 0.87 0.83 0.92 0.92 0.90
0.33 0.35 0.52 0.35 0.29 0.38 0.53 0.27

0.82 0.84 0.85 0.86 0.88 0.93 0.86 0.90
0.69 0.72 0.74 0.81 0.89 0.95 0.85 0.90
0.19 0.29 0.36 0.46 0.70 – 0.47 0.59
0.96 0.97 0.98 0.98 0.98 1 0.97 0.99
0.89 0.92 0.93 0.99 0.99 1 0.96 0.99
0.40 0.48 0.57 0.75 0.92 0.97 0.70 0.90

Table 1: Simulations with the Jukes-Cantor model. NJ(m) = MJOIN with subtree size m; BN = BioNJ; WB
= Weighbor; NM = NJML (NM); QP = the quartet puzzling algorithm; FM = fastDNAml.
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Figure 3: The tree T2.

5. DISCUSSION
Theorem 6 establishes that pairwise distance based re-

construction methods can be used to reconstruct trees from
m-subtree weights. This immediately suggests a number of
potential improvements to the algorithm we have described.
For example, by taking into account the variances of the
S(i, j), it should be possible to improve on the nieghbor-
joining algorithm for subtree weights with better agglomer-
ation (as is done in BIONJ).

In tests we performed with n = 10 taxa and m = 5 (results
not reported) we observed a deterioration in the accuracy
of the tree reconstruction algorithm, which we attribute to
inaccuracies in the subtree weights estimated with fastD-
NAml. In fact, tests with fastDNaml on five taxa revealed
that the algorithm fails to even reconstruct the correct tree
topology a significant fraction of the time (up to 80% with
the most extreme a/b parameters). Thus, we believe that
until further improvements are made in ML estimation of
trees, the best subtree weight size to use will be m = 4. We
are encouraged by various efforts in this direction [9].

We have found subtree weight reconstruction to be prac-
tical efficient for much larger examples than described here.
We have run the algorithm with m = 3 on trees of up to 50
taxa on a standard PC, and it is worth noting that for larger
problems it is trivial to parallelize the m-weight estimation.
Thus, we believe that our method is practical and recom-
mended for large tree constructions that currently rely on
either a pairwise distance method, or a heuristic maximum
likelihood search. Since the latter can fail with regularity

on trees with only five taxa, it is unlikely to be accurate for
large trees.

Our investigations have opened up a number of interest-
ing questions. For example, it would be useful to obtain
an analog of the four point condition that characterizes the
space of m-dissimilarity maps arising from trees. It would
also be of interest to develop a subtree-weight analog of the
Neighbor-Net algorithm

Finally, we point out that our results can be viewed as
providing approximations to maximum-likelihood tree re-
construction by refining distance-based methods. We be-
lieve that a deeper understanding of m-dissimilarity maps
should yield further results in this direction.

[4].
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Figure 4: Standard Deviation as a percent of total weight. For the Jukes-Cantor method, sequence length of
500BP, m=2,3,4 and subtrees drawn from T1 and T2.
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